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Abstract Stress strain relationships of a granular system are derived based on the premise that the
mean field of displacement is the best fit of actual particle displacements. Based on the best tit
hypothesis, two fundamental relationships are derived: (I) the average strain as a function of
contact displacements, and (2) the mean field of contact force as a function of stress. These two
relationships lead to a stress-strain law without the kinematic constraint of uniform strain. For an
assembly with isotropic packing structure, closed-form stress-strain relationships are explicitly
derived in which the modulus can be determined from the inter-particle stiffness. The difference
between the derived stress-strain relationship and that derived from Voigt hypothesis is discussed.
The effect offabric variation is illustrated in the theory. Discrete element analyses are also performed
and the results are used to compare with the estimated moduli from the proposed theory. In the
comparison, the solution bounds for granular assembly system are illustrated. 1997 Elsevier
Science Ltd.

I. INTRODUCTION

Mechanical behavior of a granular system is of great interest to the area of soil mechanics,
powder mechanics, bulk solid mechanics and other related fields. Due to discrete nature of
particles, the stress-strain relationship of a granular assembly should be derived with
considerations of the inter-particle properties. Along this line, development can be found
for regular packing of equal-sized spheres in the earlier work by Deresiewicz (1958) and
Duffy and Mindlin (1957), and for random packing of spheres in more recent work
by Rothenburg (1988), Walton (1987) and Jenkins (1987). The stress-strain relationship
considering the effects of particle rotation was developed by Chang and Liao (1989).

It is noted that the same vehicle used in all the aforementioned studies to achieve a
stress-strain relationship is a kinematic hypothesis relating displacements and strains, All
the aforementioned studies assumed that the strain is uniform in the packing and that every
particle within the assembly displaces in accordance with the applied strain of the assembly.
For convenience in the discussion of this paper, we term the uniform strain assumption as
the "Voigt hypothesis" and term the displacement field in accordance with the uniform
strain as the "mean displacement field",

Although the Voigt hypothesis makes it possible for the derivation of a stress-strain
relationship, it restricts the movement of particles and corresponds to an upper-bound
solution for the analysis, In this study, we make a more realistic hypothesis for the dis
placement field in the assembly, We accept the fact that the actual displacement field is not
coincide with but fluctuate about the mean displacement field. And we postulate that the
mean displacement field is the best fit of the actual displacements. This hypothesis relaxes
the kinematic constraint of Voigt assumption,

Based on this hypothesis, two fundamental relationships are derived, namely, (I) the
average strain as a function of contact displacements, and (2) the mean field of contact

4087



4088 Ching-Lung Liao et al.

force as a function of stress. Based on this hypothesis, a closed-form expression of the stress
strain relationship can also be derived for an assembly with isotropic packing structure. It
can be shown clearly from the analysis that the best fit hypothesis leads to a lower bound
solution of the stress-strain relationship. The derived results are compared with that derived
from Voigt hypothesis and that calculated from computer simulation for a random packing
of round particles. From the comparison, the solution bounds for granular assembly system
are illustrated.

2. VOIGT HYPOTHESIS

Based on Voigt hypothesis, two fundamental relationships can be derived, namely (1)
the mean field of displacement as a function of strain, and (2) the average stress as a
function of contact forces.

2.1. Mean field ofdisplacements
According to Voigt hypothesis, the movement of particles in an assembly is in accord

ance with the mean field of displacement. Under a strain til the mean field of particle
displacement can be given by

(I)

where ilf is the displacement and xi is the position vector of the centroid of particle 'a'.
Consider two particles in contact at point' c' and denote the branch vector l~ as the vector
connecting the centroids ofthe two particles. The relative displacement of the two centroids,
A~ can be obtained by:

(2)

We now consider the simple and plausible assumption commonly used in granular mech
anics that particles are relatively rigid and discontinuities are allowed at inter-particle
contacts. Then the relative displacements of the two centroids, A;, represents the dislocation
at the inter-particle contact. For convenience, in the following discussion A; is denoted as
the 'contact displacement'.

2.2. Average stress from contact forces
As a consequence of Voigt hypothesis, another important relationship for the average

stress can be derived, other than the mean displacement field. Using the principle of
potential energy conservation for the assembly, the external work done to the assembly is
equal to the internal work done at all inter-particle contacts. It can be written by

. 1 c • c

(J'/"i; = V~ fi Ll, (3)

where (Ji'l) is the potential energy per volume; (Ji; is the stress of the assembly: andf; is the
inter-particle contact force vector at contact point'c'.

Applying Voigt hypothesis to the contact displacement in eqn (3) by substituting eqn
(2) into eqn (3), it yields a useful form for the average stress expressed in terms of contact
forces, i.e.,

(4)

The Voigt hypothesis in egn (2) and the average stress in egn (4) have been widely
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used as basis for the development of constitutive law in granular mechanics, e.g., Digby
(1981), Christoffersen et al. (1981), Walton (1987), Jenkins (1988), Chang (1988), etc.

3. BEST FIT HYPOTHESIS

We consider that the actual displacement field is not coincide with but fluctuate about
the mean displacement field. The difference between the actual contact displacement A; and
the mean field displacement is

(5)

We now assume that the mean displacement field best fits of the actual displacements.
Using the process of least square, the overall fluctuation is represented by the sum of square
of E~ for all individual contacts

(6)

The mean displacement field can be obtained from minimizing the value of S. We let the
partial derivatives with respect to the strain tu be zero, i.e.,

(7)

and we obtain

(8)

3.1. Average strain from displacements
Equation (8) leads to the relationship between the strain and the contact displacements,

given by

(9)

where Vis the volume of the representative unit of the assembly and the tensor Ain is defined
by

[
I J- 1

Ain = v~l'jl~ (10)

It is noted that the inverse of A in is a fabric tensor similar to that defined by Satake (1982),
Kanatani (1984), Chang and Liao (1994) and Christoffersen et al. (1981).

In eqn (9), there are more unknown variables Af than the number of equations. Thus,
there exists many sets of solutions for Af that satisfy eqn (9). Although the mean field of
displacement is a set of solution that satisfies eqn (9), it is not necessarily the true solution.
In general, eqn (9) alone is not enough information for the determination of the contact
displacements based on the strain of the assembly. The nature of eqn (9) is very different
from that of eqn (2). However, eqn (9) is a fundamental relationship that can be used to
determine the average strain from the contact displacements.
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3.2. Mean field o/contactforces
As a consequence of the best fit hypothesis, another important relationship for the

mean contact force field can be derived, other than the average strain. Using the principle
of complementary energy conservation for the assembly, it can be written by

I .
o-.'G.' = - " ~mj'm

II 1/ V~ I !
(II)

where aiiGii is the complementary energy per volume; ail is the incremental stress of the
assembly; andj~ is the incremental inter-particle contact force vector at contact point 'c'.

Substituting eqn (9) into eqn (II), it yields

1 I.
- I~~r'JiJ~,Aill = - I~~.n.
V, V,

(12)

Note that in eqn (12), there are more unknown variablesi'; than the number of equations.
Thus there exists many sets of solutions for/; that satisfy eqn (12). From this equation
alone, it is not possible to solve for the true field of contact forces due to the applied stress.
However, we can estimate a mean field of contact-forces that satisfy eqn (12), given by

(13)

It is interesting to note that equation is identical to the one heuristically assumed earlier by
Chang and Liao (1994) and Chang and Gao (1996). Note that the mean field of contact
forces in eqn (13) is a set of solution that satisfies the equation of average stress given in
eqn (4).

4. PIECE-WIDE FIT HYPOTHESIS

In last section, we obtain the averaged strain of the assembly from the best fit of the
displacement field. However, since the strain is known to be non-uniform due to the spacial
variation of microstructure, it is desirable to take into account of this effect. To this end,
we adopt a more refined piece-wise fit to the displacement field. We first define a 'local
region' that consists of a particle and its vicinity. Then a local strain is introduced by fitting
the displacements at the local region. The overall strain can then be obtained from the
average of local strains.

4.1. Average strain from displacements
Consider a local region that consists of particle 'a' and its vicinity. The volume of the

local region denoted by va is given by

va = va(l +e) (14)

where va is the volume of the solid particle 'a' and e is the void ratio of assembly defined as
the ratio of the volume of voids to the volume of solid particles. The local volume va is
associated with each particle such that the summation of all local volume equal to the total
volume of the representative unit, given by

V=Iva
•

For each local region, a local fabric tensor is defined by

(15)
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(16)

where N" is the total number of contact (or the coordination number) of particle 'a'. The
volume average of the local fabric tensors is equal to the overall fabric tensor of the
representative volume shown in eqn (10):

I
[A.. ]-! = - "[A" ] -! va

In V";: JII

(17)

where N is the total number of inter-particle contacts in the volume V. Note that in the
double summation over contacts of all particles, each contact is counted twice, i.e ..

N a N

II=2L'
a c= 1 c= I

( 18)

The process of best fit carried out over a local region is identical to that described in
the previous section except that the quantity is now summed over the contacts in the vicinity
of particle 'a'.

After minimization through partial derivatives with respect to the strain f: i / and using
the definition of local fabric tensor given in eqn (16), we obtain the relationship between
the local strain and contact displacements, given by

I ,Va

." - " A'I'A"f~mj - -- L... Llm n in·
2 va,~!

(19)

Equation (19) provides the local strain which is an average quantity of the inter-particle
contact displacements between particle 'a' and its neighbours.

The overall strain of the representative unit can be defined as the volume average over
all local strains, given by

which leads to

I
t·.· = -" t'..'.V"

II V~ /1
(20)

(21 )

In the case of regular packing where the local fabric tensor Aj" is same as the overall
fabric tensor of the assembly Aim then eqn (21) reduces to eqn (9). In general packing
conditions, the local fabric varies with space. The strain in eqn (21) is a more refined
formulation than eqn (9), that considers the variation of the local fabric.

4.2. Mean field of contact forces
Similarly, using the principle ofcomplementary energy conservation, the mean contact

force field for the stress of the particle can be written by
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f'c .at"Aa
, i = aU n jn' (22)

If uniform stress is assumed and the packing is regular, then eqn (22) is the same as
the mean field of contact forces given in eqn (13). Equation (22) shows that, for a random
packing, the mean contact force is also a function of the local fabric structure.

5. CONSTITUTIVE LAW FOR GRANULAR ASSEMBLY

5.1. Based on Voigt hypothesis
A general relationship between the contact displacement and the contact force at a

contact point'c' can be written as

f 'e = KcAc
/ lJ ) (23)

where the stiffness tensor K~j is a function of elastic properties and the shape of the particle.
The stiffness tensor in eqn (23) can be obtained from contact theories for two elastic
particles in contact, e.g., Hertz and by Mindlin (1949).

Assuming the contact stiffness are uncoupled between normal and shear directions,
the stiffness tensor, K~j, can be written as

(24)

where K~ and K~ are the inter-particle contact stiffness in the normal and tangential
directions respectively. The local coordinate system is constructed for each contact point
by three orthogonal base unit vectors with the vector n normal to the contact area, and the
tangent vectors sand t being chosen arbitrarily.

Therefore, using eqn (23), eqn (2) and eqn (4), and assuming the strain is uniform,
then the stress-strain relationship becomes

(25)

where

(26)

From the minimum potential energy theorem, eqn (25) gives a upper bound solution of the
stress-strain relationship corresponding to the Voigt hypothesis.

5.2. Based on best fit hypothesis
The contact law relating the contact displacement and the contact force at a contact

point 'c' can be expressed in terms of a flexibility tensor, given as

Ac = SCj\
J lJ I'

(27)

Assuming the contact flexibility are uncoupled between normal and shear direction, the
flexibility tensor, S~j, can be written as

(28)

where h~ and h~ are the inverse of K~ and K~, respectively, representing the inter-particle
contact flexibility in the normal and tangential directions respectively.

Using eqn (27), eqn (13) and eqn (9), the stress-strain relationship is given as follows
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(29)

(30)

(31 )

Equation (30) is the constitutive law derived from the mean force field. However. equi
librium condition is not rigorously guaranteed. Therefore, the stress-strain relationship is
only a lower estimate, but not necessarily the lower bound.

5.3. Based on piece-wise fit hypothesis
Based on the piece-wise fit assumption, the stress-strain relationship in the form of eqn

(29) can also be derived. Using eqn (27), eqn (22) and eqn (19), and assuming the stress to
be uniform, i.e., (Jii = (J'ij, the flexibility tensor in eqn (29) becomes

(32)

Equation (32) is also derived from the mean force field. In addition, the stress for all local
region are assumed to be equal. Thus, the stress-strain relationship is considered to be a
lower bound solution.

5.4. Representation ofpacking structure
It is noted that in the present stress-strain model, information about the complete

packing structure is not necessary. For the best fit model, the packing structure is statistically
represented by a set of branch vectors. Therefore the packing can be represented by a set
of particle pairs oriented in different directions.

For the piece-wise fit model, the packing structure is statistically represented by a set
of local fabric tensors. Therefore the packing can be represented by a set of particle groups
of different configurations. Each particle group consists of a particle and its neighbouring
particles.

Since the complete packing structure in detail is not required, it greatly reduces the
computing effort compared to other types of analysis, e.g., discrete element method. Under
some idealized conditions, closed-form expressions of the stress-strain relationship can be
obtained such as the ones derived in the next section.

6. CONSTITUTIVE LAW FOR ASSEMBLY WITH ISOTROPIC PACKING STRUCTURE

In this section, we derive closed-form stress-strain relationships for a granular material
with isotropic packing structure under elastic condition. The packing of the assembly is
composed of a large number of round particles. All particles are of the same size and same
material properties.

For a suitably large representative volume with a large number of particles, the
summation can be expressed in an integral form. Let f be a quantity dependent on the
orientation of contact the summation of such a function over all contacts can be written
as

ctJ fey, fJ) = ~rnI: fey, fJ) sin y dy dfJ (33)

where y and fJ are respectively the angles of rotation and declination in a spherical coordinate
system. Using eqn (33), the derived constitutive relations in summation form can be written
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in an integral form. For the example of packings with equal sized particles, the stiffness
tensor based on Voigt hypothesis becomes:

and the flexibility tensor based on best fit hypothesis becomes:

9V feIT fIT
H Ukf = ---0 n,(y, f3)S/k (y, !J)nf(}', 13) sin y di' df3

16nNr- () ()

(36)

(37)

where r is the radius of particle, N is the total number of inter-particle contacts in the
representative volume V.

For the stress-strain relationship based on the hypothesis of piece-wise fit, the flexibility
tensor can not be expressed as a simple integration form because it involves a double
summation, not only over the contacts but also over the particles.

Proceeding from eqn (36) and (37), we now seek to derive the closed-form expressions
for the stress-strain relationships based on Voigt hypothesis and on the best fit hypothesis.
After carrying out the integration, the resulting stress-strain relationship becomes

(38)

for the Voigt model, and becomes

(39)

for the best-fit model. For the purpose of comparing this equation with eqn (38), we inverse
eqn (39) to the following form:

(40)

In the theory of solid mechanics, the usual stress-strain relationship for an isotropic
elastic material is given by

E l v J(Ju =1----- su+ -j-2- Bkf,(),/+v· - v
(41)

where E and v are, respectively, Young's modulus and Poisson's ratio. By comparing eqn
(41) with eqns (38) and (40), the equivalent Young's modulus E the equivalent Poisson's
ratio v and the equivalent bulk modulus B for granular materials are obtained and listed
below:
(I) Based on Voigt hypothesis

For assemblies with spherical particles
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Kn-K,
v=---

4Kn+K,

(42)

For assemblies with disk particles

Kn~K,
v==---

3Kn+K,

(43)

(2) Based on the best fit hypothesis
For assemblies with spherical particles

20Nr
2
Knl K, JE= ? ;3V _Kn+3K,

For assemblies with disk particles

8Nr
2

K l K J
E = V Ii K" +~K, ; v=

Kn +3K,

(44)

(45)

According to eqns (42)-(44), the derived bulk moduli based on Voigt hypothesis is
identical to that based the best-fit hypothesis. However, the derived Young's modulus and
Poisson's ratio are different based on the two different hypotheses. Using eqns (42) and
(44) for packings of spheres, Young's modulus is plotted in Fig. 1 and Poisson's ratio is
plotted in Fig. 2 against the ratio of K, and Kn- Under the condition of K, = K,l' the moduli
and Poisson's ratios are same for both Voigt and the best fit models. When K, is much
smaller than Km the differences become large. When the tangential stiffness K, approaches
to zero, in the best fit model, Poisson's ratio approaches to 0.5 and Young's modulus
approaches to zero. Physically, it implies that a granular assembly with perfectly smooth
particles (i.e., zero inter-particle tangential stiffness) has no shear modulus but retains bulk
modulus. The granular assembly thus can resist only the isotropic bulk stress but not the
deviatoric stress; it behaves like fluid. However, in Voigt model, the granular assembly
with zero inter-particle tangential stiffness still has moderate shear modulus and behaves
like solid.

The two types of hypotheses have distinctive differences in the predicted behavior for
a granular assembly. In order to have a clearer perspective of the predicted behavior in
relation to the true behavior, we examine the limitations of the two hypothesis. The
limitation of Voigt hypothesis is its assumption of uniform strain for the entire region of
the granular assembly. This limitation is not applied to the best-fit hypothesis in which the
assumed displacement field is a least-square fit of the true displacements of particles.
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Fig. 1. Young's modulus for a packing of spheres based on Voigt hypothesis and the best fit
hypothesis.
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Fig. 2. Poisson"s ratio for a packing of spheres based on Voigt hypothesis and the best fit hypothesis.

However, the best-fit displacement field retorts to another type of limitation with which the
displacement field does not necessarily satisfy the kinematic compatibility between 'local
regions'. The condition of compatibility, on the other hand, is guaranteed by Voigt hypoth
esis of uniform strain.

Uniform strain is an extremely restrictive assumption on the displacement field so that
we expect the Voigt hypothesis leads to a prediction of stiffer behavior. On the contrary,
the best-fit hypothesis allows freedom for the displacement field to fit the true displacements
of particles without the constraints of compatibility between local regions. Therefore the
predicted behavior is expected to be softer than the true behavior.

Using eqns (42) and (44) for packings of disks, Young's modulus and Poission's ratio
against the ratio of K, and Kn are plotted in Figs 3 and 4. The trends are similar to that of
the packing of spheres.
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Fig. 3. Young's modulus for a packing of disks based on Voigt hypothesis and the best fit hypothesis.
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Fig. 4. Poisson's ratio for a packing of disks based on Voigt hypothesis and the best fit hypothesis.

7. NUMERICAL EXAMPLES

In the previous section, we have derived closed-form stress-strain relationships of an
isotropic granular assembly using Voigt model and the best fit model. We now use numerical
calculation to obtain the elastic modulus using the piece-wise model. In this analysis,
information about local fabric structure is required. We proceed this numerical analysis
with two different ways of determining the local fabric structure. In the first example, the
local fabric structures are generated from random generation. In the second example, we
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create a complete packing structure in the discrete element analysis. Then thc local fabric
structures are sampled from the packing.

7.1. Random generation olloealfabric structure
The configurations of a particle group, consisting of a particle and its ncighbouring

particles, is randomly generated. We generate many particle groups to statistically represent
the isotropic packing structure of a granular assembly. Here we use 800 particle groups to
represent a random packing structure.

In random packing, the local fabric are inevitably anisotropic. However, in the random
generation process, the axes of local fabric anisotropy are equally possible to occur in all
orientations. The 800 groups are used to compute the local fabric tensor in cqn (16). The
overall fabric tensor for the packing, averaged from the 800 local fabric tensors according
to eqn (17), reasonably retains the overall isotropy. Then the overall moduli of the packing
is determined based on eqn (32).

To study the effect of coordination number on local fabric and the resulting modulus,
we let all 800 groups be made of same number of particles. Four different packing structures
are considered: i.e., the number of neighbouring particles Nil = 3, 4, 5 and 6. The elastic
modulus estimated from the piece-wise fit hypothesis is plotted in Fig. 5 compared with
that estimated from Voigt hypothesis.

For a particle with less neighbours, there is more freedom for the neighbours to form
different configurations, and it is possible to form highly anisotropic configurations in the
local region. On the other hand, for a particle with more neighbours, it is less possible to
have a highly anisotropic configuration. For example in the packing with cqual sized disks,
a particle with six neighbours is the densest packing structure and can only have a single
possible configuration. Under this condition, the local fabric tensor is found to be same for
all particle groups (i.e., A~j = Au). Thus the predicted modulus with N" = 6 obtained from
the piece-wise fit model, as shown in Fig. 5, is identical to that derived from the best-fit
model.

Compare to Fig. 4 and Fig. 5, a significant difference can be observed between the best
fit model and the piece-wise fit model, particularly when Kil = K,. This deviation is caused
from the heterogeneity of the granular packing structure that is considered in the piece
wise fit model. Figure 5 shows that modulus decreases with the coordination number
because a lower N" indicates a more variation of the local fabric structure. Thus the packing

1.00.80.60.40.2
O.a L... I...-.......--l_.......--J._-'----l._.............J

0.0

0.8

0.2

0.4

0.6

K/Kn

Fig. 5. Young's modulus obtained from the piece-wise fit hypothesis for packings of disks with
different coordination number.
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~--~
0.4

K/Kn

Fig. 6. Comparison of Young's modulus obtained from (I) Voigt hypothesis. (2) piece-wise fil
hypothesis. and (3) discrete element method.

with N" = 3 has the lowest estimate of modulus. This is in agreement with the anisotropic
and heterogeneous nature of loose microstructure described previously.

7.2. Comparison with DEM results
Several random packings consisted of approximately 800 circular disks with equal size

are used to evaluate the moduli using the discrete element method (OEM). The elastic
moduli derived from the OEM method are then compared with the moduli derived from
Voigt model and the piece-wise fit model.

For the piece-wise fit model, the packing structure is represented by a set of particle
groups of different configurations. Particle groups are obtained by sampling directly from
the complete packing structure.

The results for all paekings show similar behavior trend. The results of a typical
packing are plotted in Fig. 6. The packing consists of 897 with a periodic packing structure.
Total number of contacts is 2306 and the average coordination number 5.142.

The modulus obtained from OEM is plotted in Fig. 6, compared with the modulus
estimated from Voigt and piece-wise hypotheses. It shows that these two solutions can be
served as the upper and lower bound of the modulus.

8. CONCLUSION

Voigt hypothesis has been widely used in granular mechanics for estimating the stress
strain behavior of randomly packed particles. In this study. we relax the kinematic con
strains of Voigt hypothesis and use a best fit hypothesis for the displacement field in the
assembly. Based on the best fit hypothesis, two fundamental relationships are derived: (I)
the average strain from contact displacements and (2) the mean field of contact forces from
stress. These two relationships lead to a stress-strain relationship that is different from the
usual ones derived from Voigt hypothesis.

The following conclusions can be drawn from this paper:

(I) The stress-strain relationship derived from the best fit hypothesis show very different
behavior from that derived from the Voigt hypothesis. For example in the cases of particles
with zero tangential stiffness, the assembly has a fluid-like instead of a solid-like behavior.
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(2) The piece-wise fit model show the effect of local fabric variation as a result of the
structural heterogeneity of the granular packing. The variation of local fabric in a loose
packing is a significant factor influencing the modulus of the packing.

(3) The piece-wise fit model is derived based on a mean field of contact forces with the
assumption of uniform stress for all local regions in the packing. Thus it is a lower
bound solution. Together with the upper solution from Voigt hypothesis, it provides useful
estimates for the range of the true solution.
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